

Technical Programme and General Information

Welcome to Pisa and to RASD 2013

On behalf of the Organising Committee, it is a pleasure to welcome you to Pisa for the XI International Conference on Recent Advances in Structural Dynamics (RASD 2013). Some of you may have attended many of the previous conferences and may be surprised that this time we are not meeting in Southampton! We really hope that bringing RASD 2013 to Pisa will be stimulating and that all of you will have an enjoyable conference.

The conference is devoted to theoretical, numerical and experimental developments in structural dynamics and their application to all types of structures and dynamical systems. The conference will reflect the state-of-the-art structural dynamics and dynamical systems in science and engineering practice and is an opportunity to exchange scientific, technical and experimental ideas.

The Conference Proceedings include 127 papers by authors from over 25 countries and are contained on a USB memory stick attached to your lanyard. You will find this inside the conference folder together with the book of abstracts and this programme which may help you in planning your attendance.

The conference will be held at the Polo Didattico Universitario Fibonacci (Ex Marzotto, Via Buonarroti 4, 56127 Pisa, Italy), which is close to the Leaning Tower and the Cathedral of Pisa. Registration will take place from 5:00pm to 7:00pm on Sunday 30 June in the main entrance hall on the first floor of the conference venue (RASD 2013 registration desk, tel: +44 (0)7786277986 or +39 3773213562). Further registration will take place from 8.00am on Monday 1 July. Please enter the building by the main entrance on Via Filippo Buonarroti and follow the RASD 2013 signs to the registration desk.

The four lecture theatres being used are the Auditorium and Rooms 1, 2 and 4. To locate the lecture theatres refer to the floor plan of the Polo Didattico Universitario Fibonacci on the last page of this programme. Tea and coffee will be served on the first floor in the morning and between the two technical sessions in the afternoon. Lunch will be served in the same area. You will also be able to buy tea, coffee and light refreshments from a kiosk café just outside the venue from 10:00am to 3:00pm.

Following the afternoon session on Monday, there will be a conference reception at the 'Palazzo del Consiglio dei Dodici', in Piazza dei Cavalieri, which is a short walking distance from the conference venue. The conference reception is for all delegates and accompanying persons. On Tuesday evening there will be a conference dinner at the 'Chiostro della Chiesa di Santa Maria del Carmine' in Corso Italia, 85. Again this is walking distance from the conference venue, just the other side of the river Arno.

I would like to thank the members of the Organising Committee and the Conference Secretariat for their considerable help. In particular I would like to thank the DICI (Department of Industrial and Civil Engineering) of the University of Pisa for hosting this conference.

I hope you will all have an interesting and exciting meeting and a pleasant stay in Pisa.

Emiliano Rustighi, Conference Chair

Conference Outline

Sunday 30 June

17:00 - 19:00	Early Registration
---------------	--------------------

Monday 1 July

08:00 - 10:00	Registration
08:45 - 09:00	Opening Ceremony
09:00 - 10:00	Plenary Session 1
10:00 - 10:30	Coffee/Tea Break
10:30 - 12:30	Technical Sessions
12:30 - 13:40	Lunch
13:40 - 14:40	Plenary Session 2
14:50 - 16:10	Technical Sessions
16:10 - 16:40	Coffee/Tea Break
16:40 - 18:00	Technical Sessions
19:00 - 20:00	Conference Reception at 'Palazzo dei Dodici'

Tuesday 2 July

09:00 - 10:00	Plenary Session 3
10:00 - 10:30	Coffee/Tea Break
10:30 - 12:30	Technical Sessions
12:30 - 13:40	Lunch
13:40 - 14:40	Plenary Session 4
14:50 - 16:10	Technical Sessions
16:10 - 16:40	Coffee/Tea Break
16:40 - 18:00	Technical Sessions
19:30	Conference Dinner at 'Chiostro del Carmine'

Wednesday 3 July

09:00 - 10:00	Plenary Session 5
10:00 - 10:30	Coffee/Tea Break
10:30 - 12:30	Technical Sessions
12:30 - 13:40	Lunch
13:40 - 14:40	Plenary Session 6
14:50 - 15:50	Technical Sessions
15:50 - 16:10	Coffee/Tea Break
16:10 - 16:20	Closure Session and Best Presentation Award
16:30	Optional Tour of the DICI: Department of Industrial and Civil
	Engineering

103-03 Additorium Prof D. Acquaro. Department of Civil and Industrial Engineering. University of Piaa 09:00 Plenary Session 1 Additorium Prof D. Acquaro. Department of Civil and Industrial Engineering. University of Piaa 10:00 Coffee/Tea Break Nonlinear Vibrations 1 Professor Y. Suda "Divance Simulation and Analysis for Sustainable Transport Syst University of Tokyo. Japan 10:00 Nonlinear Vibrations 1 Vibroacoustics I Nonlinear Vibrations 1 Structural health monitoring M. G. M. McDould (19) Maximg typanic for method on the vibration of two in-sulu ransfer path analysis methods N. Poplewell (883) mothes in pipes M. G. McDould (19) Maximg typanic for method of multiple scales 11:10 R. Darula (841) An analytical study of non- inare barois of theories of an ambulance N. Totaro (943) Modal energy analysis F. L. Marques dos Santos (25) Modal energy analysis J. Maxdonald (1094) An analytical study of non- intere barois on Interally oci structures J. Maxdonald (1094) An analytical study of non- intere barois on Interally oci structures J. Maxdonald (1094) An analytical study of non- intere barois on of finite element ramsfits and theory on the structures and structures J. Maxdonald (1094) An analytical study of non- intere barois on of finite element ramsfits and theory on the structures J. Maxdonald (1094) An analytical study of non- intere barois on finite element ramsfits and physical study of non- intere induce structures J. Actructures J. Maxdonald (1094) An analytic			MONDAY 1 J	ULY 2013	
Display Auditorium University of Tokyo, Japan Onterpresentation Coffee/Tea Break Auditorium Room 1 Room 2 Nonlinear Vibrations 1 Vibroacoustics 1 Structural health monitoring Human Structural health monitoring Inc. 30 L. N. Virgin (839) On the behavior of post-buckled plates N. Zafeiropoolos (1030) A comparison of two in-situ transfer path analysis method or structure and analysis method second indices from returned (606) Quantification of airborn noise arrowhare. In the origon is need cuarantee arrowhare. In the origon path analysis method detection is need cuarantee (606) Quantification of airborn noise arrowhare. In the origon path analysis method reservices N. Greenation of the method of multiple scales L. Gale (620) L. Gale (610) An anole (1004) An anole (1000			Dr N. Ferguson , Institute of Sound and Vibration Research, University of Southampton Prof D. Acquaro , Department of Civil and Industrial Engineering, University of Pisa		
Auditorium Room 1 Room 4 Room 2 Nonlinear Vibrations I Vibroacoustics I Structural health monitoring Human Structural health 10:30 Ln N Virgin (383) plates N. Zaferopoulor (1030) member of path malysis methods instructure N. Poplewall (857) monitoring M. G. McDonald (919) methods in plates N. Of McDonald (919) Measuring (949) methods M. Magalhase (1037) monitoring N. Poplewall (840) methods M. G. McDonald (919) Measuring (949) methods M. G. McDonald (919) Measuring (949) methods M. Magalhase (1037) monitoring R. Rofriguez. Rocha (900) Lattice tever dynamic for indiced dynamic loadin molecule apperimental as indicated system indices M. Magalhase (1037) methods R. Rofriguez. Rocha (900) Lattice tever dynamic individue method of multiple experimental indiced dynamic loadin molecule apperimental setsing for structural health monitoring N. Totaro (943) Mool energy analysis Hei Casha (940) Mool energy analysis A madelyse energy analysis method of methods in the monitoring N. Totaro (943) Mool energy analysis method of regenerative transmission modelling in the unater are G. Zarini (969) Mool energy analysis method of regenerative transmission in atternal second in the intervice with application to crack detection from active transmission modelling in the expansion for full field results J. Chen (797) Acceleration response an analysis method of regenerative biosectrum J. Chen (797) Acceleration response an analysis method of regenerative tof low graphic model noninnecresponse an analysis met				Simulation and Analysis for Sus	tainable Transport Systems",
Nonlinear Vibrations I Vibroacoustics I Structural health monitoring Human Struct Interaction Accomparison of two in-situ transfer path analysis method optimization of past-backled plates N. Zafeiropoulos (1030) A. Comparison of two in-situ transfer path analysis method coefficients from rectange instructure apparently simple experimental apparently simple experimental ambulance N. Zafeiropoulos (1030) A. Comparison of two in-situ transfer path analysis method or arbone noise apparently simple experimental ambulance M. G. McDonald (919) (2020) M. G. McDonald (919) (2020) 11:10 R. Danala (841) M. Magalhaes (1037) (22.00.5 Dicl' electro-magneto- mechanical system by in- method of multiple scales N. Totaro (243) (Modal energy analysis F. L. Marques dos Santos (923) I. Gale (2020) L. Gale (2020) 11:30 N. Hofman (863) (S. Volandri (1003) G. Volandri (1003) (Comparison of finite element formalacios for sound expansion for full field results G. Zarini (969) (Modal energy analysis method of multiple scales Y. Hayashi (815) (Uninsative evaluation energican expense and expansion for full field results Y. Hayashi (815) (Uninsative evaluation expansion for full field results) Y. Hayashi (815) (Uninsative evaluation expansing for full field results) Y. Haya):00		Coffee/T	'ea Break	
Instruction Instruction Instruction Instruction Instruction 10:30 L. N. Virgin (838) N. Zacimopoulos (1000) A. Comparison of two in-situ transfer path analysis methods Reflection and transmission mothers in pipes M. Abconald (1904) 10:50 L. N. Virgin (839) M. Magalhaes (1037) R. Rodriguez. Rocha (906) Comparative study of damage detection in stel catenary risker ambulance R. Rodriguez. Rocha (906) Lattice tower dynamic induced dynamic loadin induced if multiple scales G. Volandri (1003) G. Zaria (969) Y. Hapski (815) (Uirasiois vave digersion cave with application to cark detection in acoustic errors with application to a wake-oscillator for vortex-induced vibrations of marine resers. TU De		Auditorium	Room 1	Room 4	Room 2
10:30 L. N. Virgin (38) On the behavior of post-buckled plates N. Zafeiropoulos (103) (A. Magalhaset (1037) (anger path analysis methods near services N. Popplewell (885) (anger path analysis methods near services M. G. McDonald (919) (A. Magalhaset (1037) (anger path analysis methods near services M. Magalhaset (1037) (anger path analysis methods near services M. Magalhaset (1037) (anger path analysis methods near services R. Rodriguez-Rocha (906) (anger path analysis transmission in the interior of an apparently simple experimental structure R. Rodriguez-Rocha (906) (anger path analysis transmission in the interior of an analysis R. Rodriguez-Rocha (906) (anger path analysis transmission points) L. Galle (720) (Anger path analysis method of moliphe scales I. Calle (720) (Anger path analysis method of moliphe scales I. Macdonald (1094) (1094) 11:30 R. Darula (841) (A. analytical study of non- linear behaviour of coupled 2+2×0.5 DOF electro-magneto- mechanical system hythe method of moliphe scales G. Volandri (1003) (Comparison of finite element formulations for sound transmission modelling in the outer eart G. Zarini (969) Ultrasonic wave dispersion unitive scale dynamics Y. Hayashi (815) Quantitative evaluation rotational motion path ecouries analysis method of generative houre eart J. Chen (979) (A. Electron response of long-span floor unde walking loads 11:30 J. Harvie (860) Reduced order system model nonlinear response and expansion for full field results blower K. S. Hithis Houre with analysis of the vibration of a finite plate excited by an in-plane point force K. A. Elbhhah (1036) F. Energy flow analysis of the vibration of a kake-oscillato for vortex-induced vibrations of ma		Nonlinear Vibrations I	Vibroacoustics I		Human Structure Interaction
10:50 L.N. Virgin (839) M. Magahaes (1037) R. Rodriguez-Rocha (906) L. Gaile (920) 11:10 R. Darula (841) An analytical study of non- linear behaviour of coupled N. Totaro (943) F. L. Marques dos Santos (925) J. Macolanald (1094) 11:10 R. Darula (841) N. Totaro (943) Modal energy analysis Helicopter main rotor blade method of multiple scales J. Macolanald (1094) A novel experimental testing for structural health monitoring N. Rodriguez-Rocha (906) J. Macolanald (1094) 11:30 N. Hoffmann (853) G. Volandri (1003) G. Zarini (969) Y. Hayashi (815) Priction induced orbit system model nonlinear response and expansion for full field results H. G. Kil (1010) K. A. Elbhabh (1036) J. Chen (97) 12:10 Hervie (860) H. G. Kil (1015) Energy flow analysis of the vibration of a finite plate excited blower J. Harvie (860) J. Chen (97) 12:10 Hervie (860) H. G. Kil (1035) Energy flow analysis of the vibration of a finite plate excited blower J. Chen (97) J. Chen (97) 13:40 Plenary Session 2 nonlinear response of nonlinear response of nonlinear response of alcoched resonance curves in the frequency response of nonlinear vibrations of a marke-oscillato for vortex-induced vibrations of marine risers'', <i>TU Del(ft, Netherlands</i> S. K. Sadat Sho		On the behavior of post-buckled	A comparison of two in-situ	N. Popplewell (885) Reflection and transmission coefficients from rectangular	Measuring dynamic force of a jumping person by monitoring
11:10 R. Darula (841) An analytical study of non- linear behaviour of coupled 2, 22.05 DOF electro-magneto- mechanical system by the method of multiple scales N. Totaro (943) Modal energy analysis F. L. Marques dos Santos (225) Helicopter main rotor blade modelling and experimental as the identification of hum actions on laterally osci structures 11:30 N. Hoffmann (863) Friction induced vibration as multi-scale dynamics G. Volandri (1003) Comparison of finite element rotational motion patter joints of the lower limb outer ear G. Zarini (969) Ultrasonic wave dispersion curves with application to crack detection from acoustic emissions in aircraft structures Y. Hayashi (815) Quantitative evaluation or totational motion patter joints of the lower limb emissions in aircraft structures 11:50 J. Harvie (860) Reduced order system model nonlinear response and expansion for full field results H. G. Kil (1010) Aero-acoustic performance analysis method of regenerative blower K. A. Elibabah (1036) Fault diagnosis in rotating machine using composite bispectrum J. Chen (979) Acceleration response s o fol long-span Bloor unde walking loads 12:30 Lunch (Hall) 13:40 Plenary Session 2 Auditorium Prof Andrei Metrikine, "Development, evaluation and application of a wake-oscillato for vortex-induced vibrations of marine risers", <i>TU Delft, Netherlands</i> S. K. Sadat Shokowi (S. K. Sadat Shokowi (S. K. Sadat Shokowi (S. K. Sadat Shokowi (S. Vibro-acoustic analysis of an enclosure bounded by a flexible absorbers: a comparison S. K. Sadat Shokowi (S. Wibro-acoustic analysis of aneclosure bounded by a lexible paramiter future and mat		Dynamic instability in an apparently simple experimental	Quantification of airborne noise transmission in the interior of an	R. Rodríguez-Rocha (906) Comparative study of damage	L. Gaile (920) Lattice tower dynamic performance under human
11:30 N. Hoffmann (863) G. Valandri (1003) G. Zarini (969) Y. Hayashi (815) Priction induced vibration as multi-scale dynamics G. Walandri (1003) G. Zarini (969) Y. Hayashi (815) Quantitative evaluation transmission modelling in the outer ear Uttrasonic ware dispersion curves with application to crack detection from acoustic emissions in aircraft structures machine using composite bispectrum Y. Hayashi (815) 11:50 J. Harvie (860) H. G. Kil (1010) K. A. Elbhahn (1030) J. Chen (979) 4cro-acoustic performance analysis method of regenerative blower Fault diagnosis in rotating machine using composite bispectrum J. Chen (979) 12:10 H.G. Kil (1035) Energy flow analysis of the vibration of a finite plate excited by an in-plane point force Funct (Hall) 13:40 Plenary Session 2 Auditorium Prof Andrei Metrikine, "Development, evaluation and application of a wake-oscillato for vortex-induced vibrations of marine risers", <i>TU Delft, Netherlands</i> Earthquake engine inverse problems I 14:50 G. Gatti (876) Some insight into the evidence of dtached resonance curves in absorbers: a comparison K. S. Shin (818) Development of road noise estimation technology based on character of tire and matrix inversion method F. Javier Cara (938) Oprimotion and algais of an motinear socillators M. Saranik (790) Comparin	1:10	R. Darula (841) An analytical study of non- linear behaviour of coupled 2+2×0.5 DOF electro-magneto- mechanical system by the	N. Totaro (943)	Helicopter main rotor blade modelling and experimental testing for structural health	J. Macdonald (1094) A novel experimental setup for the identification of human actions on laterally oscillating
Reduced order system model nonlinear response and expansion for full field resultsAcco-acoustic performance analysis method of regenerative blowerFault diagnosis in rotating machine using composite bispectrumAcceleration response a of long-span floor unde walking loads12:10I.G. Kil (1035) Energy flow analysis of the vibration of a finite plate excited by an in-plane point forceI.G. Kil (1035) Energy flow analysis of the vibration of a finite plate excited by an in-plane point forceI.G. Kil (1035) Energy flow analysis of the vibration of a finite plate excited by an in-plane point forceI.G. Kil (1035) Energy flow analysis of the vibration of a finite plate excited by an in-plane point forceI.G. Kil (1035) Energy flow analysis of the vibration of a finite plate excited by an in-plane point forceI.G. Kil (1035) Energy flow analysis of the vibrations of marine risers", <i>TU Delft, Netherlands</i> 13:40Plenary Session 2 AuditoriumProf Andrei Metrikine, "Development, evaluation and application of a wake-oscillato for vortex-induced vibrations of marine risers", <i>TU Delft, Netherlands</i> Earthquake engine index engine index engine index engine14:50G. Gatti (876) Some insight into the evidence of detached resonance curves in the frequency response of nonlinear oscillatorsK. S. Shin (818) Development of road noise estimation technology based on enclosure bounded by a flexible panel: effect of the boundary conditionF. Lavier Cara (938) Operational modal analysis of multiple recordsM. Saranik (790) Comparing the results of vulnerability of steel str with and without the int of low cycle fatigue dat asnitivities analysis of a power ture	1:30	N. Hoffmann (863) Friction induced vibration as	Comparison of finite element formulations for sound transmission modelling in the	Ultrasonic wave dispersion curves with application to crack detection from acoustic	Y. Hayashi (815) Quantitative evaluation of the rotational motion pattern in the joints of the lower limb during the unrestrained human gait
12:10 H.G. Kil (1035) Energy flow analysis of the vibration of a finite plate excited by an in-plane point force Image: Comparison of a state of the plate excited by an in-plane point force 12:30 Lunch (Hall) 13:40 Plenary Session 2 Auditorium Prof Andrei Metrikine, "Development, evaluation and application of a wake-oscillato for vortex-induced vibrations of marine risers", <i>TU Delft, Netherlands</i> 13:40 Plenary Session 2 Auditorium Prof Andrei Metrikine, "Development, evaluation and application of a wake-oscillato for vortex-induced vibrations of marine risers", <i>TU Delft, Netherlands</i> 14:50 G. Gatti (876) Some insight into the evidence of detached resonance curves in the frequency response of nonlinear oscillators K. S. Shin (818) Development of road noise estimation technology based on character of tire and matrix inversion method F. Locsco (908) An optimized identification method for modular models of rubber bushings S. K. Sadat Shokouhi (9 Evaluating the seismic of index of LSF systems u frechour occlustor 15:10 M. Loccuffer (888) Trends in tuning nonlinear absorbers: a comparison Y. Wang (883) Vibro-acoustic analysis of a neclosure bounded by a flexible panel: effect of the boundary crossing and lock-in through variation anong veering, crossing and lock-in through variation of the system parameters M. Pishbin (955) Structural dynamics identification of a bolt and nut joint using modal test data 15:50 B. El Bikir Khalid (855) Large vibration amplitude of circular functionally graded H. Wu (1011) Numerical study of a submerged hull win intern		Reduced order system model nonlinear response and	Aero-acoustic performance analysis method of regenerative	Fault diagnosis in rotating machine using composite	Acceleration response spectrum of long-span floor under human
13:40Plenary Session 2 AuditoriumProf Andrei Metrikine, "Development, evaluation and application of a wake-oscillator for vortex-induced vibrations of marine risers", <i>TU Delft, Netherlands</i> 13:40AuditoriumRoom 1Room 4Room 2AuditoriumRoom 1Nonlinear Vibrations IIVibroacoustics IISystem identification and inverse problems IEarthquake engine14:50G. Gatti (876) Some insight into the evidence of detached resonance curves in the frequency response of nonlinear oscillatorsK. S. Shin (818) Development of road noise estimation technology based on character of tire and matrix inversion methodF. I. Cosco (908) An optimized identification multiple roodsS. K. Sadat Shokouhi (9 Evaluating the seismic of index of LSF systems u rebro acoustic analysis of an enclosure bounded by a flexible panel: effect of the boundary conditionF. Javier Cara (938) Operational modal analysis using joint statistical analysis of multiple recordsM. Saranik (790) Comparing the results of vulnerability of steel str with and without the int of low cycle fatigue dar15:30L. Xu (872) Dynamic characteristics and sensitivities analysis of a power turret gear trainO. Giannini (910) Transition among veering, crossing and lock-in through variation of the system parametersM. Pishbin (955) Structural dynamics identification of a bolt and nut joint using modal test dataI. E. Harik (995) Nutural and man-made I mitigation of transporta structures15:50B. El Bikri Khalid (855) Large vibration amplitude of circular functionally gradedH. Wu (1011) Numerical study of a submerged h			H.G. Kil (1035) Energy flow analysis of the vibration of a finite plate excited		
13:40Auditoriumfor vortex-induced vibrations of marine risers", TU Delft, NetherlandsAuditoriumRoom 1Room 4Room 2AuditoriumRoom 1Room 4Room 2Nonlinear Vibrations IIVibroacoustics IISystem identification and inverse problems 1Earthquake engine14:50G. Gatti (876) Some insight into the evidence of detached resonance curves in the frequency response of nonlinear oscillatorsK. S. Shin (818) Development of road noise estimation technology based on character of tire and matrix inversion methodF. I. Cosco (908) An optimized identification method for modular models of rubber bushingsS. K. Sadat Shokouhi (9 Evaluating the seismic of index of LSF systems up FEA-ANN approach15:10M. Loccufier (888) Trends in tuning nonlinear absorbers: a comparisonY. Wang (883) O (Giannini (910) Transition among veering, crossing and lock-in through variation of the system parametersM. Pishbin (955) Structural dynamics identification of a bolt and nut joint using modal test dataI. E. Harik (995) Natural and man-made I mitigation of transporta structures15:50B. El Bikri Khalid (855) Large vibration amplitude of circular functionally gradedH. Wu (1011) Numerical study of a submerged hull with internal massesS. Y. Esadze (843) Vertical seismic vibratic cantilever constructions	2:30				
Nonlinear Vibrations IIVibroacoustics IISystem identification and inverse problems IEarthquake engine14:50G. Gatti (876) Some insight into the evidence of detached resonance curves in the frequency response of nonlinear oscillatorsK. S. Shin (818) Development of road noise estimation technology based on character of tire and matrix inversion methodF. I. Cosco (908) An optimized identification method for modular models of rubber bushingsS. K. Sadat Shokouhi (9 Evaluating the seismic of index of LSF systems up FEA-ANN approach15:10M. Loccufier (888) Trends in tuning nonlinear absorbers: a comparisonY. Wang (883) Vibro-acoustic analysis of an enclosure bounded by a flexible panel: effect of the boundary conditionF. Javier Cara (938) Operational modal analysis using joint statistical analysis of multiple recordsM. Saranik (790) Comparing the results of vulnerability of steel str with and without the int of low cycle fatigue dar15:30L. Xu (872) Dynamic characteristics and sensitivities analysis of a power turret gear trainO. Giannini (910) Transition among veering, crossing and lock-in through variation of the system parametersM. Pishbin (955) Structural dynamics identification of a bolt and nut joint using modal test dataI. E. Harik (995) Natural and man-made I mitigation of transporta structures15:50B. El Bikri Khalid (855) Large vibration amplitude of circular functionally gradedH. Wu (1011) Numerical study of a submerged hull with internal massesS. Y. Esadze (843) Vertical seismic vibratic cantilever constructions					
Inverse problems IInverse problems I14:50G. Gatti (876) Some insight into the evidence of detached resonance curves in the frequency response of nonlinear oscillatorsK. S. Shin (818) Development of road noise estimation technology based on character of tire and matrix inversion methodF. I. Cosco (908) An optimized identification method for modular models of rubber bushingsS. K. Sadat Shokouhi (9 Evaluating the seismic of index of LSF systems up FEA-ANN approach15:10M. Loccufier (888) Trends in tuning nonlinear absorbers: a comparisonY. Wang (883) Vibro-acoustic analysis of an enclosure bounded by a flexible panel: effect of the boundary conditionF. Javier Cara (938) Operational modal analysis of using joint statistical analysis of multiple recordsM. Saranik (790) Comparing the results of vulnerability of steel str with and without the int of low cycle fatigue dar15:30L. Xu (872) Dynamic characteristics and sensitivities analysis of a power turret gear trainO. Giannini (910) Transition among veering, crossing and lock-in through variation of the system parametersM. Pishbin (955) Structural dynamics identification of a bolt and nut joint using modal test dataI. E. Harik (995) Natural and man-made I mitigation of transporta structures15:50B. El Bikri Khalid (855) Large vibration amplitude of circular functionally gradedH. Wu (1011) Numerical study of a submerged hull with internal massesS. Y. Esadze (843) Vertical seismic vibratic cantilever constructions		Auditorium	Room 1	Room 4	Room 2
Some insight into the evidence of detached resonance curves in the frequency response of nonlinear oscillatorsDevelopment of road noise estimation technology based on character of tire and matrix inversion methodAn optimized identification method for modular models of rubber bushingsEvaluating the seismic of index of LSF systems up FEA-ANN approach15:10M. Loccufier (888) Trends in tuning nonlinear absorbers: a comparisonY. Wang (883) Vibro-acoustic analysis of an enclosure bounded by a flexible panel: effect of the boundary conditionF. Javier Cara (938) Operational modal analysis using joint statistical analysis of multiple recordsM. Saranik (790) Comparing the results of vulnerability of steel str with and without the int of low cycle fatigue dar15:30L. Xu (872) Dynamic characteristics and sensitivities analysis of a power turret gear trainO. Giannini (910) Transition among veering, crossing and lock-in through variation of the system parametersM. Pishbin (955) Structural dynamics identification of a bolt and nut joint using modal test dataI. E. Harik (995) Natural and man-made I mitigation of transporta structures15:50B. El Bikri Khalid (855) Large vibration amplitude of circular functionally gradedH. Wu (1011) Numerical study of a submerged hull with internal massesS. Y. Esadze (843) Vertical seismic vibratic cantilever constructions		Nonlinear Vibrations II	Vibroacoustics II	inverse problems I	Earthquake engineering l
15:10M. Loccufier (888) Trends in tuning nonlinear absorbers: a comparisonY. Wang (883) Vibro-acoustic analysis of an enclosure bounded by a flexible panel: effect of the boundary conditionF. Javier Cara (938) Operational modal analysis using joint statistical analysis of multiple recordsM. Saranik (790) Comparing the results of vulnerability of steel str with and without the int of low cycle fatigue dar15:30L. Xu (872) Dynamic characteristics and sensitivities analysis of a power turret gear trainO. Giannini (910) Transition among veering, crossing and lock-in through variation of the system parametersM. Pishbin (955) Structural dynamics identification of a bolt and nut joint using modal test dataI. E. Harik (995) Natural and man-made I mitigation of transporta structures15:50B. El Bikri Khalid (855) Large vibration amplitude of circular functionally gradedH. Wu (1011) Numerical study of a submerged hull with internal massesS. Y. Esadze (843) Vertical seismic vibratio cantilever constructions		Some insight into the evidence of detached resonance curves in the frequency response of	Development of road noise estimation technology based on character of tire and matrix	An optimized identification method for modular models of	S. K. Sadat Shokouhi (937) Evaluating the seismic damage index of LSF systems using FEA-ANN approach
15:30 L. Xu (872) O. Giannini (910) M. Pishbin (955) I. E. Harik (995) Dynamic characteristics and sensitivities analysis of a power turret gear train Transition among veering, crossing and lock-in through variation of the system parameters Structural dynamics identification of a bolt and nut joint using modal test data Natural and man-made mitigation of transporta structures 15:50 B. El Bikri Khalid (855) H. Wu (1011) Numerical study of a submerged hull with internal masses S. Y. Esadze (843)	5:10	M. Loccufier (888) Trends in tuning nonlinear	Y. Wang (883) Vibro-acoustic analysis of an enclosure bounded by a flexible panel: effect of the boundary	Operational modal analysis using joint statistical analysis of	M. Saranik (790) Comparing the results of seismi vulnerability of steel structures with and without the integration of low cycle fatigue damage
Large vibration amplitude of circular functionally gradedNumerical study of a submerged hull with internal massesVertical seismic vibration cantilever constructions		Dynamic characteristics and sensitivities analysis of a power turret gear train	O. Giannini (910) Transition among veering, crossing and lock-in through variation of the system parameters	Structural dynamics identification of a bolt and nut	I. E. Harik (995) Natural and man-made hazard mitigation of transportation structures
foundations		Large vibration amplitude of circular functionally graded plates resting on Pasternak	H. Wu (1011) Numerical study of a submerged		S. Y. Esadze (843) Vertical seismic vibration of cantilever constructions

	Auditorium	Room 1	Room 4	Room 2
	Modal analysis and structural modification	Vibroacoustics III	System identification and inverse problems II	Earthquake engineering II
16:40	P. Neri (1093) Explanation and application of the SAFE diagram	J. M. Renno (766) Calculating the forced response of cylinders using the wave and finite element method	S. Chakraverty (829) Parameter identification of multistorey frame structure from uncertain dynamic data	M. G Shaikh (765) Finite element modeling of reinforced concrete beam column joint
17:00	L. Soria (909) Operational modal analysis of passenger cars: effect of the correlation between front and rear inputs	G. Ni (836) Waves in a three-dimensional model of the cochlea	SI. Choi (819) Identification of vibration path in a gasoline direct-injection engine using two input-one output model	G.N.Vakhrina (966) The analysis of methods of generating accelerograms for calculation of buildings
17:20	T. Hirai (1019) Damping in jointed friction plates with partially overlapping interfaces	Y. S. Al Rjoub (976) The reflection of SV-waves in a poroelastic half-space saturated with viscous fluid	S. B. Shiki (864) Identification of mechanical systems with local nonlinearities through discrete-time Volterra series and Kautz functions	L. Solazzi (913) Evaluating the seismic effects or lifting equipment
17:40	B. Hajiuon (956) Finite element model updating of a bolted joint using modal test data	J. Wei (809) Wave based method for free vibration analysis of ring- stiffened cylindrical shells with bulkheads		V. M. Agrawal (820) Effect of irregularity on the fundamental period of setback buildings

Session Title	Session Chairman	
9:00 - 10:00	Plenary Session 1	Michael Brennan
10:30 - 12:30	Nonlinear Vibration I Vibroacoustics I Structural Health Monitoring Human Structure Interaction	Jamil Renno Vicente Lopes Jr
13:40 - 14:40	Plenary Session 2	Miha Boltežar
14:50 - 16:10	Nonlinear Vibration II Vibroacoustics II System Identification and Inverse Problems I Earthquake Engineering I	Neil Popplewell Snehashish Chakraverty
16:40 - 18:00	Modal Analysis and Structural Modification Vibroacoustics III System Identification and Inverse Problems II Earthquake Engineering II	Andrei Metrikine Gianluca Gatti

		TUESDAY 2 J	ULY 2013	
09:00	Plenary Session 3 Auditorium		fluence of boundary conditions a eatments: foams to metamaterials	
10:00		Coffee/T	ea Break	
	Auditorium	Room 1	Room 4	Room 2
	Nonlinear Vibrations III	Vibration Control	Civil Engineering Structures	Numerical Techniques
10:30	L. I. Wilmshurst (972) Nonlinear vibrations of a stroke- saturated inertial actuator	J. Salvi (1002) Analysis and optimisation of tuned mass dampers for impulsive excitation	N. Blaise (828) Equivalent static wind loads for structures with non-proportional damping	H. RIOU (825) PGD-VTCR: a reduced order model technique to solve mid- frequency broad band problems on complex structures
10:50	A. Abolfathi (1034) On the performance of a nonlinear vibration isolator consisting of axially loaded curved beams	D. P. McCrum (1328) Optimisation of a tuned liquid column damper for building structures	H. A. Elgohary (831) New empirical formula for the determination of the fundamental period of vibration of multi-storey RC buildings	S. Obando (856) System model modes developed from expansion of uncoupled component dynamic data
11:10	R. H.B. Fey (902) Nonlinear vibrations of base excited shallow arches: effects of hinge friction	Y. Nakano (999) Design method of multiple dynamic absorbers for suppressing chatter in end- milling operation	S. K. Sadat Shokouhi (897) Improving the blast performance of base-isolated structures using pneumatic dampers via genetic algorithm	M. Belyi (898) Advanced linear dynamic capabilities and modeling abstractions in abaqus
11:30	A. U. Rehman (1091) Coulomb friction-induced damping estimation at the crack interface for cantilever-type specimen	H. Yamaguchi (901) Linear friction damper consisted of tilt lever supported with leaf spring and cylindrical block	Y. C. Han (1290) Dynamic analysis for ball mill foundation	N. Avramova (936) An assessment tool for quantifying cumulative effect or modeling errors for smart hybri- simulation
11:50	U. Bhattiprolu (1023) Efficient predictions of the steady state response of a beam interacting with viscoelastic materials	T. Koizumi (1004) The vertical seismic isolator by using a link-crank mechanism	F. Behnamfar (807) Development of fragility curves for cylindrical concrete water tanks	M. Javorski (1046) Magnetostriction-induced dynamics of laminated structure
12:10	N. Panananda (934) The effect of cubic damping on a base excited isolator: an experimental study for harmonic excitation	F. Behnamfar (816) Proposing a new elastomeric- sliding isolator system	J. Jia (1609) P Offshore Structural Assessment by Dynamic Approach	P. Tiso (1550WIP) Nonlinear component mode synthesis using modal derivatives
12:30		Lunch	(Hall)	I
13:40	Plenary Session 4 Auditorium		esponse Control Of Tall Building search Institute, Roorkee, India	
	Auditorium	Room 1	Room 4	Room 2
	Active Vibration Control and Smart Structures I	Soil-Structures Vibrations	Reusable Hypersonic Platform I	Analytical Modelling
14:50	I. F. Lazar (891) A new vibration suppression system for semi-active control of a two-storey building	M.J. Brennan (939) Measurement of wave attenuation in buried plastic water distribution pipes	D. M. A. Millar (887) A Review of Fatigue Failures with Aircraft Engine Nacelle Components	XJ. Sun (865) Influence of displacement- dependent suspension damping on transient response of earth- moving machinery cab
15:10	B. R. Mace (990) Design and adaptive model- based feedforward control of an electromagnetic tuned vibration absorber with shunt electronics	J. Maestre Heredia (1538WIP) A 3D time domain BEM approach accounting for internal soil attenuation	M. P. Mignolet (890) Coupled reduced order model- based structural-thermal prediction of hypersonic panel response	CO. Chang (968) The frequency analysis of double-end tuning fork quartz resonators
15:30	V. Wickramasinghe (804) Active control of seats to reduce helicopter aircrew exposure to vibration	K. Liddell (1548WIP) Accurate location of explosive misfires using a single channel detector	K. A Sweitzer (914) Allowing for non-proportionality in multiaxial spectral fatigue analysis	Y. Zhang (821) Three-dimensional elasticity solutions for free vibrations of thick rectangular plates with various boundary conditions
15:50	P. Singru (771) Seat design and control of passenger vibrations in a quarter car model		M. P. Mignolet (946) Reduced order modeling for the static and dynamic geometric nonlinear responses of a complex multi-bay structure	
16:10		Coffee/T	ea Break	

	Auditorium	Room 1	Room 4	
	Experimental Methods	Fluid-Structure Interaction	Reusable Hypersonic Platform II	
16:40	A. Palermo (942) Gear transmission error measurement accuracy using low-cost digital encoders	Z. Haitao (874) Dynamics of a nonlinear liquid sloshing inside a tank	F. Kihm (1006) Understanding how Kurtosis is transferred from input acceleration to stress response and its influence on fatigue life	
17:00	C. Niezrecki (950) Monitoring the dynamics of an operating helicopter rotor using 3d digital stereophotogrammetry	KH. Jeong (982) Free vibration analysis of a fixed- free rectangular tank partially surrounded with water	M. Česnik (1045) Vibrational fatigue and structural dynamics at harmonic and random loads	
17:20	G. M'Boungui (770) Ultrasonic motor using first and second bending modes	D. Saba (991) Review and upgrade of a bulk flow model for the analysis of honeycomb gas seals based on new high pressure experimental data	A. Swanson (1055) P Combined environment validation of hypersonic structures	
17:40	S. A. Rizzi (803) Recent enhancements to the NASA Langley structural acoustics loads and transmission (SALT) facility	M. Lepidi (1014) Aeroelastic stability of a symmetric multi-body sectional model	S. M. Spottswood (892) A Structural Perspective On The Challenges Associated With Analyzing A Reusable Hypersonic Platform	

Session Title

Session Chairman

9:00 - 10:00	Plenary Session 3	Stephen Rizzi
10:30 - 12:30	Nonlinear Vibration III	Lawrence Virgin
	Vibration Control	Paola Forte
	Civil Engineering Structures	Sara Casciati
	Numerical Techniques	Miha Boltežar
13:40 - 14:40	Plenary Session 4	Snehashish Chakraverty
14:50 - 16:10	Active Vibration Control and Smart Structures I Soil-Structure Vibrations	
	Reusable Hypersonic Platform I	•
	Analytical Modelling	
16:40 - 18:00	Experimental Methods	Kimihiko Nakano
	Fluid-Structure Interaction	Paola Forte
	Reusable Hypersonic Platform II	Neil Ferguson

		WEDNESDAY 3	JULY 2013	
09:00	Plenary Session 5 Auditorium	Dr. S. A. Rizzi, "An Overview NASA Langley Research Cente	Of Virtual Acoustic Simulation r, USA	Of Aircraft Flyover Noise",
10:00		Coffee/T	ea Break	
	Auditorium	Room 1	Room 4	
	Active Vibration Control and Smart Structures II	Uncertain Dynamical Systems	Reusable Hypersonic Platform Workshop	
10:30	M. Zilletti (1025) Tuneable vibration absorber for multi modal control of lightly damped structures	J Náprstek (817) Compressional wave features propagating in a two dimensional domain with randomly imperfect material density	Moderated Discussion	
10:50	P. Gardonio (1031) Velocity feedback loops with composite hexagonal and circular piezoelectric patch actuators	J. Yang (1042) Evaluation of statistical overlap and frequency spacing of two randomised dynamic systems	Moderated Discussion	
11:10	M. Soliman (1300) Development and validation of a finite element structure semi- active tuned liquid damper system model	M. Caresta (1043) Impact dynamics of cylindrical shells	Moderated Discussion	
11:30	S.Q. Zhang (788) Unknown disturbance estimation and compensation using PI observer for active control of smart beams	H. Chung (899) Distribution of vibrations of a double-leaf plate with random inhomogeneities	Moderated Discussion	
11:50	T. Senda (832) Development of control system for dynamic absorber using neural oscillator and position controller	C. Lecomte (927) An efficient Krylov model reduction approach for the direct evaluation of analytical frequency average of transfer functions in the low-, mid-, and high-frequency ranges	Moderated Discussion	
12:10	K. Shiomi (924) Sensor layout design procedure for active control of floor panel vibration with modal filtering technique	S. De Rosa (1536WIP) First investigations on bounded eigenvalues for spectral finite elements models	Moderated Discussion	
12:30	•	Lunch	(Hall)	
13:40	Plenary Session 6 Auditorium		adband Vibration-Based Energy ', <i>The George Washington Unive</i>	
	Auditorium	Room 1	Room 4	
	Energy Harvesting	Stochastic Dynamics and Random Vibrations	Railway Noise and Vibration	
14:50	M. J. Brennan (853) On the simultaneous use of a resonator as an energy harvester and a vibration absorber	C. Liu (875) Dynamic response and reliability analysis for a turret	S. Casciati (947) The effect of temperature variability when monitoring a railway bridge	
15:10	M. Ghandchi Tehrani (933) Energy harvesting using semi- active nonlinear control	E. Capiez-Lernout (922) Nonlinear stochastic dynamical post-buckling analysis of uncertain cylindrical shells	J. Maestre Heredia (1026) Train-induced building vibration due to high-speed train passage	
15:30	K. Nakano (1009) Feasibility study on energy harvesting using stochastic resonance	L. Cortes (1541WIP) Uncertainty propagation in complex modes based component mode synthesis	P. M. Belotserkovskiy (814) Interaction between a flexible wheel-set and corrugated rails	
15:50	Coffee/Tea Break			
16:10		Closure of th	e Conference	
16:30	Tour of DICI: Department of Industrial and Civil Engineering			

	Session Title	Session Chairman
9:00 - 10:00	Plenary Session 5	Paola Forte
10:30 - 12:30	Active Vibration Control and Smart Structures II Uncertain Dynamical Systems Reusable Hypersonic Platform Workshop	Brian Mace
13:40 - 14:40	Plenary Session 6	Kimihiko Nakano
14:50 - 15:50	Energy Harvesting Stochastic Dynamics and Random Vibrations Railway Noise and Vibration	Sergio De Rosa

Information Regarding the Technical Sessions

Information for Presenters of Contributed Papers

Oral presentations of contributed papers are given 15 minutes, plus 5 minutes for questions and change-over. Please stick strictly to these time limits. A data projector and a laptop will be available in all rooms and you are required to use the laptop provided; if you require any further AV aids please let us know. Presentations should be on CD or USB memory stick. You can load your presentation on Sunday 30th of June in the foyer of the conference venue or, from Monday 1st of July, in the room where you will give your presentation. Please load your presentation in one of the breaks before your session starts and meet the session chairman in the room at least 10 minutes before the session begins.

Information for Session Chairs

20 minutes has been timetabled for each oral presentation in the parallel sessions: 15 minutes plus 5 minutes for questions and change-over. Please stick strictly to these time limits. An AV assistant will be present.

Congress Venue

Polo Didattico Universitario Fibonacci (Ex Marzotto) Via Buonarroti, 4 56127 Pisa, Italy

Parking

Pay and display parking is available on Via Buonarroti and is marked with blue lines. The fee, from 8:00am to 2:00pm, is \bigcirc 0.60 an hour. The parking is free after 2:00pm.

Internet Connection at the Congress Venue

• Eduroam users

University of Pisa offers an Eduroam (education roaming) internet connection. Eduroam is a secure, world-wide wireless access service for research and education communities. To access

Eduroam use your home institution username and password. In order to access Eduroam you need to have registered to the service at your home institution first.

• Others

If your organisation is not part of Eduroam or you have not registered before, ask at the registration desk for a temporary username and password.

Map of Pisa

Key:

A – The Leaning Tower
B – Piazza dei Cavalieri (conference reception)

C – Polo Marzotto (conference venue) E – Chiesa del Carmine (conference dinner)

General information

Reaching Pisa

• Arriving by Plane

Pisa airport is at the south-west end of the town, surprisingly close (1.5 km or 15min walk) to the train station. In addition to cabs, you can take bus LAM ROSSA (Red Line) and possibly switch, at the train station, to buses serving your destination.

• Arriving by Train

Most buses stop at the train station serving the various areas of the town, so public transportation is quite effective. Cabs also stop at the train station.

• Arriving by Car

The preferred highway exit for Pisa is Pisa Centro, which brings you straight to the airport and from there you can cross the town for your destination. You can drive along the river, but otherwise most of the central streets are restricted traffic areas, with camera access control at the (very visible) gates. Be careful not to enter these if you don't want a fine. Just in case, check with your hotel for instructions. Note that street parking (at least in the places marked by blue lines) is generally subject to a fee from 8:00am to 8:00pm

Transportation

Here we deal mostly with local transportation. In Pisa, you'll have a choice between walking, local bus service and taxi in town, and bus, train and rental cars should you wish to visit nearby places.

• Walking

Why not? The conference location is within walking distance of the train station (2 km) and the airport (3 km). Most of the tourist areas are also within 1/2 km of the conference site.

• Local Bus Service

The local bus service is run by a company called CPT (<u>www.cpt.pisa.it</u>), and offers transportation to most hotels downtown or in the near proximity. Most buses run between 6:30am and 9:00pm, with two night lines running every 20 minutes till 11:30pm. One-hour tickets cost \pounds 1.10 (or less for blocks of 4-10: see the full tariffs <u>www.cpt.pisa.it/tariffe/tariffenew.htm</u>).

• Taxi

Local taxi transportation is managed by a company called CoTaPi (<u>www.cotapi.it</u>). The cabs typically stand at the train station, airport and piazza Arcivescovado (near the tower), or you can call +39 050541600 and follow the instructions in Italian.

• Hotel Shuttles

Many hotels are equipped with a minivan and offer (often free) transportation to and from locations in the town. This may be a good option if you plan to arrive or leave early or late in the day.

• Tourist Buses

City Sightseeing Pisa (<u>www.pisa.city-sightseeing.it</u>) runs an open-top bus going around the central part of the town, which you might find of some interest.

• Non-Local Buses

Connections to nearby towns and villages (Tirrenia, Marina di Pisa, Livorno, San Giuliano, Lucca) are supplied by two bus companies (CPT, <u>www.cpt.pisa.it</u>, and Lazzi, <u>www.lazzi.it</u>), and by trains. The last buses to Tirrenia, Marina and Livorno leave around 11:00pm, while those to Lucca and San Giuliano typically run their last service around 9:00pm.

• Train

Trains are useful if you want to visit nearby cities such as Florence and Viareggio. Details on train schedules can be found on the link <u>www.trenitalia.com</u>. Direct trains to and from Florence are very frequent and convenient (once per hour, travel time is 1hr). Going to and from Siena takes two-three hours and a connection in Empoli.

• Car (and Car Rental)

Most car rental companies are based at the Pisa Airport. Italian cars normally have manual-shift.

If you plan to drive through Pisa, keep in mind the following:

- Most of the central part of the town is a pedestrian area ("ZTL"), with camera surveillance equipped with OCR for license plate reading. The system does work well, and if you are not authorized to pass the gate, the chances are very high that you'll be caught and fined;
- Street parking is generally permitted, but on the parking places marked by blue stripes you have to pay an hourly fee between 8:00am and 8:00pm. Coinoperated parking meters are available in those areas, and you can buy tickets for the expected duration of your stop. For longer parking, you might find it convenient to buy electronic pre-paid cards; you can buy them in "Tabacchi" shops.
- Speed limits vary depending on the road. In town it is usually 50 km/h, outside it is either 70 or 90 depending on the number of lanes in each direction, and 130 on the toll highways. Here again, there are a large number of fixed speed cameras installed on nearby highways (both the non-toll Fi-Pi-Li, and the toll Pisa-Firenze), including some that compute your average speed.
- Bike Rental

There are a few companies renting bicycles and similar vehicles in Pisa. Among these are Pisa Scooter & Bike Rental (<u>www.hotelfrancesco.com/bikerental.html</u>), and <u>www.toscanaintour.it</u>.

Currency, Language, Units

The local currency is the Euro (\bigoplus), which comes in coins (1-2-5-10-20-50 cents, 1-2 Euros) and notes (5-10-20-50 and, less commonly, 100-200-500). Amounts are generally rounded to the next 5 cents. The currency is used across several EU countries so the coins may carry local symbols. The notes are the same in all countries. More information on the notes can be found at the European Central Bank (www.ecb.int).

The local language is of course Italian, with no strong dialect spoken (unlike some places in northern and southern Italy). English is mostly understood and (slightly less often) also spoken.

Banks, Credit Cards and ATM

Banks are open from Monday to Friday, from 8:30am to 1:30pm and in the early afternoon, from 3:00pm to 4:30pm. On Saturday and Sunday money can be changed in hotels, currency exchange booths in the Leaning Tower area and at the airport. Banks also have ATM machines ("bancomat"), which are open 24 hours a day, seven days a week and take most credit cards.

Major credit cards are accepted by hotels, restaurants and most shops.

Tipping and Receipts

Tipping is not required nor expected in Italy: the bill ("conto") always includes service. So, particularly in bars, restaurants and taxis, etc., it is acceptable to pay exactly the amount on the bill.

Italian law requires businesses to release a receipt if requested ("scontrino fiscale" or a "ricevuta fiscale") with date, sequence numbers, and identification of the business. A note scribbled on a piece of paper is not a valid receipt.

Weather

In July the temperature rises during the day to an average of 25°C. The appropriate dress for the conference is business casual

AC Voltage and Plugs

AC power is 220 Volts, 50Hz. Plugs have three round pins in-line (the central is ground and may be missing sometimes). Schuko (German-style) plugs are also used but are somewhat less popular. Most of the power sockets at the conference will be able to accommodate Italian and Schuko plugs. Adapters for UK and US power plugs are available in several electrical supply stores.

Health

The Italian emergency number is 118 and can be reached by any phone or by going to the "Pronto Soccorso", which is located in via Paradisa 2. You will not be refused treatment for real emergencies, even if you don't have an insurance policy or credit card. Some treatments or tests are of course subject to payment, depending on your citizenship (Italian and EU citizens have public health insurance services) and the type of treatment.

By law, drugs are generally sold in medicine shops ("Farmacie"), but never in supermarkets and other stores. "Farmacie" are normally open during business hours, with only some open 24 hours. Ask at your hotel reception for assistance.

Telephones

• Number formats and prefixes

Italian phone numbers are variable in length, both in the "prefisso" (prefix, or area code) and in the local part of the number. The prefix must always be included, even for local calls. A leading "0" denotes area codes for wired phones (e.g. 050 is Pisa, 055 is Florence, 06 is Rome, 02 is Milan). The leading "0" is an integral part of the area code and must be dialed also when calling from abroad. A leading "1" is normally used for toll services or emergency numbers and a leading "3" indicates the prefix for cellular phones (eg 347, 340, 338...). These are not area specific. Toll free

numbers have the "800" prefix (but they are normally only free from landlines), whereas other prefixes starting with "8" are toll services and may be expensive.

Finally, international calls must be prefixed by "00" and the international prefix for the country you are calling (so it is 001 for the US, 0044 for the UK, and so on). The international phone prefix for Italy is +39.

• Emergency numbers

113: Polizia (police, general emergency) - 118: Pronto soccorso (Emergency medical service) - 115: Vigili del fuoco (fire brigade)

• Calling from public phones

Public phones are rapidly vanishing these days, except in airports and train stations. They might be coin-operated but more often will take a calling card (on sale in some bars and tobacco shops) or sometimes a credit card, though this can be expensive.

• Calling centers

Especially in the station area (via Corridoni), where there are more visitors from abroad, there are several call centers with cheap tariffs for international calls.

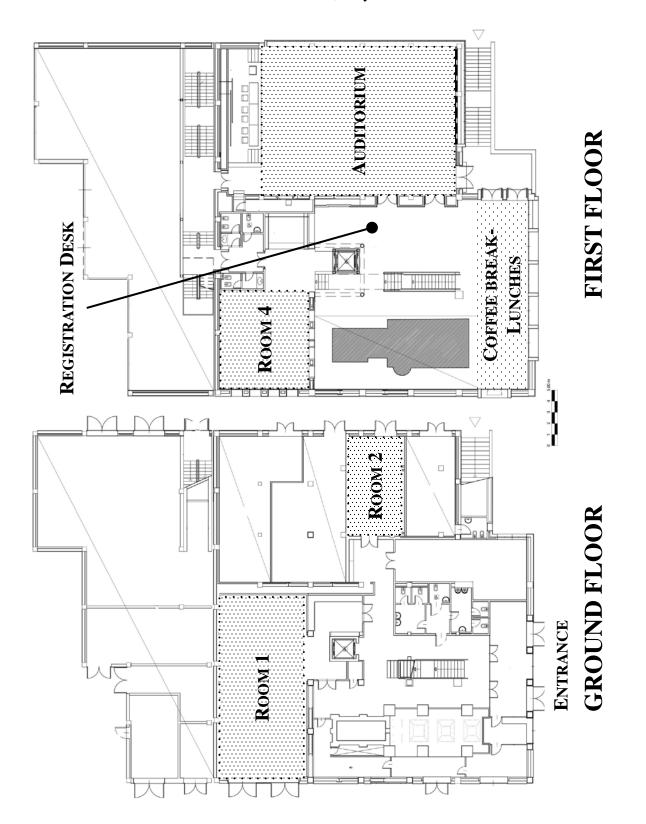
Internet Access

• Internet points

There are a number of internet points in the central part of the town (via dei Mille, via Carducci) and in the station area. Tariffs are from $\notin 2.00$ per hour and above, and normally, you are not allowed to connect your own equipment, but must rely on the machines supplied there.

• Hotel Access

The situation varies here as well. Most hotels still have only dialup access, with some of the newer establishments also offering wireless connectivity (for free or for a daily or hourly fee) in the lobby or possibly also (wired) in the rooms.


Shopping

Shops are generally open Monday to Saturday, 9:00am-1:00pm and 4:00pm-8:00pm. Some stores (usually clothing) are closed on Monday morning. Others (usually electricity, hardware etc.) are closed on Saturday afternoon. Supermarkets and department stores usually are open 8:00am-8:00pm (excluding Sunday).

The main shopping streets (clothing, jewelery, pottery) are around Borgo Stretto and Corso Italia, cutting the town North to South across ponte di Mezzo. A shopping mall with a large electronics store (MediaWorld) is just 1 km north-east of the train station, in via Matteucci.

Polo Didattico Universitario Fibonacci

Via Buonarroti, 4 56127 Pisa, Italy

